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SUMMARY 

The Q2/P1, P i /P l ,  P2/Po and Ql/Po velocity-pressure mixed elements are extended to the stress- 
velociy-pressure formulation, using the same interpolants for stress and velocity, and tested in the 4-to- 1 
contraction problem for Stokes flow. The comparison shows significant differences among them, which are 
not present when the velocity-pressure formulation is used. 

To provide a better understanding of the phenomenon, several variants of the previous elements are 
introduced, obtained by either changing the pressure space or by enriching the stress space with bubble 
functions. The formulation exhibits a strong sensitivity to the first alternative, while the second produces 
only a minor effect. These observations are confirmed by a convergence test effected on a regular problem 
with the explicit analytical solution. Also, as a result of the whole comparison, the P f / P i  /PI element looks 
promising for three-field calculations. 

1. INTRODUCTION 

In this paper we deal with the stress-velocity-pressure formulation of the Stokes problem, which 
has received increasing attention during the last years.’-* The motivation for this has come from 
the area of viscoelastic flow simulation, where the extra-stresses cannot be eliminated at the exact 
problem level and a three-field formulation is, thus, unavoidable. In the early and fundamental 
papers of Crochet and Marchal,6*7 it was recognized that a mixed finite element that works 
properly in the Newtonian limit is a necessary (although unfortunately not sufficient) condition 
for successful simulation of highly elastic liquids. In particular, of primary interest are those 
elements with continuous (Co) approximation for the stress, because this allows the use of 
Newton’s iterations to deal with the non-linearities that occur in the constitutive equation. 

In this work we study the numerical performance of several three-field mixed finite elements of 
this kind, obtained essentially by using the same interpolants for velocity and extra-stress 
components. This allows a fruitful comparison of various possibilities, identifying those combina- 
tions that behave poorly. To understand better these results, we consider elements that differ only 
in either the pressure space or the extra-stress one, so as to gain some insight into the interplay 
among the discrete spaces. 

The plan of this paper is as follows: In Section 2 the exact problem and its variational 
formulation is presented. The approximation method, together with the basic mixed elements to 
be studied are described in Section 3. Section 4 contains the numerical results as obtained with the 
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elements of Section 3. We then turn to consider some variants of the original elements, which are 
presented and tested in Section 5. A numerical convergence analysis is carried out in Section 6. 
Some overall conclusions are drawn in Section 7. 

2. THREE-FIELD FORMULATION OF THE STOKES PROBLEM 

In this work, we will deal with a three-field formulation of the Stokes problem that appears as the 
zero-elasticity limit of viscoelastic models that include an additional viscosity (the same formula- 
tion has been studied in Reference 1). The classical formulation can be obtained making this 
additional or solvent viscosity p2 take zero value. The governing equations are, in differential 
form: 

-pZV'u-divz+Vp=f, (1) 

div 'U = 0, ( 2 )  

T - ~ P ~ D U = O ,  (3) 
where v stands for the velocity field, t for the extra-stress tensor, p for the pressure, DU for the 
strain rate tensor and f for the body forces. It is clear that, replacing (3) in (l), the classical 
velocity-pressure formulation of the Stokes problem, with viscosity equal to pl + pz is recovered. 
For that reason, the usual boundary conditions of specified velocities (Dirichlet type) or bound- 
ary forces (Neumann type) are required. 

Let R be the (bounded) domain of interest, C=[CL*(R)]! be the space of symmetric 2 x 2  
tensors, V =  [HA (a)]' be the space two-dimensional vector fields with square-integrable derivat- 
ives that vanish at the boundaries, and Q = L$(R) be the space of square integrable functions with 
zero integral. For simplicity, we are restricting to homogeneous Dirichlet boundary conditions. 
An appropriate variational form of (1)-(3) is, thus, 

Find (9, p ,  Z)E V x  Q x C ,  such that 

l n ( 2 p 2 D ~ + t ) :  DwdR- 

q div 'U d Q = O ,  VqEQ,  

r 

3. FINITE ELEMENT APPROXIMATION 

It is quite natural to discretize (4)-(6) introducing the finite element spaces 

VhCv ,  Q h t Q ,  xh'=C 
and restricting the variational problem to these subspaces. If p2 >O, it can be readily shown that 
existence and uniqueness of the discrete problem is obtained, whenever the well-known 
Babuska-Brezzi or inf-sup condition over V,, and Q,, holds. Moreover, convergence to the exact 
solution with optimal order as h tends to zero can be proved.' In the limit of zero pz, another 
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Figure 1. The four basic mixed elements to be compared (0 stress-velocity node, A pressure node) 

inf-sup condition is required, namely, 

jno:  DwdR 
inf sup 2p>0 ,  

W E X I  11 11 11 11 
where the norms of w and o are those of V and 2, respectively, and 

(7) 

Let us now introduce four basic mixed elements which will be considered in the sequel (see also 
Figure 1). Some possible variants will be discussed in later sections. All of them have continuous 
interpolants for stress and velocity, while the pressure is approximated by discontinuous functions. 
The label assigned to each element is formed by the usual notation for interpolants, in the 
following order: extra-stress-velocity-pressure. 

1. Biquadratic/biquadratic/linear (Q2/Q2/P1): In this case, the Q,/P, element, known to 
perform very well for the velocity-pressure formulaton, is used. Complete biquadratic inter- 
polants approximate the velocity inside each element, while piecewise linear discontinuous 
interpolants are used for the pressure. For each component of t, also biquadratic basis 
functions are used (this element has also been considered in Reference 8). 

2. Enriched quadratic/enriched quadraticllinear (P: /P: /PI): This is another element that 
works very well for the velocit y-pressure formulation. Velocities are approximated by 
qadratic functions inside each element, with the addition of a bubble function for stability. 
Pressure is approximated by discontinuous piecewise linear functions. Again, the t compon- 
ents have the same interpolants as the velocity components. 

3. Quadratic/quadratic/constant ( P2/P2/Po): This element is very similar to the previous one. 
However, to satisfy the Babuska-Bred condition without adding bubbles, the pressure 
space must be reduced just to piecewise constant functions, thus loosing h-convergence 
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4. 

order. In fact, combining P2 velocities with linear discontinuous pressure leads to the 
well-known checkerboard effect typical of spurious pressure modes. 
Eilinear/bilinear/constant (Q1 /Ql/Po): In this case, the well-known Q1/Po element is used 
for velocity and pressure. Although this combination does not satisfy the Babuska-Brezzi 
condition, it is known to yield good results. Each component of T is also interpolated with 
Q1 approximation. 

4. NUMERICAL EXPERIMENTS WITH THE FOUR BASIC ELEMENTS 

We will restrict ourselves to a quite standard model problem in this section, the 4-to-1 plane 
contraction, which will thus be only briefly described. The computational domain and the meshes 
chosen are not intended to provide precise results, but just to allow for performance comparison. 
To avoid unnecessary parameters we will keep pi + p2 equal to one in all the experiments. 

With the contraction line situated at x2 =0, the domain extends from x2 = - 4  to x2 = + 4. At 
the inlet, a fully developed velocity profile with mean velocity equal to 0.25 is imposed, so that the 
mean velocity at the outlet is 1. At the outlet, the horizontal velocity is specified as zero. 

We will use the meshes of Figure 2 for biquadratic quadrilaterals. For bilinear quadrilaterals 
each element is subdivided into four equal ones. In the case of quadratic triangles, each rectangle 
of Figure 2 is divided into two triangles by joining the lower-left and upper-right corners. In this 
way, whatever the element is considered, we will compare results obtained with the same number 
of stress-velocity nodes (exception made of bubble-type unknowns). 

As all of the elements considered are known to perform well in the velocity-pressure formula- 
tion (which in our formulation corresponds to pl =O and p2 = l), our interest is focused in the 
region of small p2.  As p2 goes to zero, the theoretical results of Reference 1 cease to apply, and we 
are left with the open problem of whether the elements considered are stable or not in this limit. 

To study this, we put pl = 0.999, p 2  = 0.001 and obtain the results of Figures 3-5, correspond- 
ing to the Q2/QZ/P1, P i  / P i  /Pl and Q1/Q1/Po elements, respectively. In these figures, we have 
plotted the horizontal velocity (vl ) and vertical normal extra-stress ( f Z 2 )  contours as computed 

MESH 1 

80 elements 

Figure 2. Meshes for the 4-to-1 contraction problem 
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z22 

on the three meshes of Figure 2. The comparison shows that the P: /Pi /PI is much more robust 
than the other two, which present mesh-sized oscillations which are (at least) very hard to remove 
by mesh refinement. 

Obseroation: A reference computation made on a very fine mesh using a standard 
Navier-Stokes solver yielded minimum and maximum values for v1 of -0.3324 and 
0.2101 x respectively (to be compared with the values reported in the figures). 

v1 1 MIN :-0.3458 
02 

Element: Q2 /GI2 /P 1 

n 

2 

I 
~~~ 

MESH 1 MESH 2 

t 2 2  

V1 

02 

MESH 3 

Figure 3. w1 and rZ2 contours as obtained with the Qz/Q2/Pl element on the three meshes of Figure 2. We have taken 
pl =0*999 and pz=O-OO1 
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Element: P; /P; /pl 

I 

MESH 1 

I I MlN:-0.3313 

VI 

MI N:-0.3359 
02 2 

MESH 2 

1 

1 MIN:-2.551 
MAX: 1.232 6 

I 

MESH 3 

Figure 4. Performance of the P l  /P: /P, element (as in Figure 3) 

However, even if the performance of the basic quadrilaterals is not optimal, it is infinitely better 
than that of the P2/P2/Po element, which is clearly unstable (Figure 7(a) shows the correspond- 
ing v1 contours as obtained with MESH 3). We have to stress at this point that none of the above 
pathologies persists when pz increases and, thus, they clearly come from a poor (at best) 
satisfaction of condition (7). 

The unstructured nature of triangular meshes also allowed us to continue the refinement in the 
vicinity of the re-entrant corner. Although this results are not included for brevity reasons, they 
confirm the robustness of the P:/P:/Pl element, with no sensitivity to abrupt 
mesh-size changes. 
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MAX: 0.933E-02 

I 

MESH 1 

Element: Q, /Q1 /Po 

MAX: 0.880-02 

I 

MESH 2 

I 

-02 - 

I 

MESH 3 

Figure 5. Performance of the Q1/Ql/Po element (as in Figure 3) 

5. SOME VARIANTS OF THE FOUR BASIC ELEMENTS 

A full explanation of the results of the previous section is far beyond our goals (and knowledge). 
Nevertheless, as current research in the numerical analysis of the Stokes problem (mainly 
motivated by viscoelastic flow simulation) concerns the stability and convergence properties of 
the three discrete spaces coupled by the variational problem ((4)-(6)), it is interesting to 
investigate some variants of the four basic elements obtained by modifying this spaces at will. 

We divide this section in two main parts. In one of them we study the effects of changing the 
discrete pressure space, thus strengthening or weakening the incompressibility constraint. In the 
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Element:Q2/Q2/P0 (MESH21 

Figure 6. Unstable behaviour of the Q2/Q2/Po element when p2 approaches zero 

other, we consider the effects of adding bubbles to the stress space but not to the velocity one. In 
turn, this can be regarded as allowing the constitutive equation (6) to be better fulfilled than the 
dynamic equilibrium equation (4) (correspondingly, equations (3) and (1) for the differential 
formulation). 

5.1. The ejiect of the incompressibility constraint 

We will consider here two mixed elements: the Q2/Q2/Po square and the P: /P:/Po triangle. 
These are to be compared with their linear-pressure counterparts already presented. When p1 is 
small, both of them yield acceptable results with the meshes of Figure 2. Increasing pl strongly 
deteriorates both the stress and the velocity fields, while the pressure remains smooth. 

To illustrate this loss of accuracy, we show in Figure 6 the horizontal velocity contours, as 
obtained with the Q2/Q2/Po element with pl =0*5 (Figure 6(a)), 0.9 (Figure 6(b)) and 0.999 
(Figure 6(c)) on MESH 2. The behaviour of the P: /P: /Po triangle, with p1 =0999 on MESH 
3 can be seen in Figure 7(c). 

Observing the resemblance of the results obtained with the P2/P2/Po and the P: / P i  /Po 
triangles, the performance of the former becomes less surprising. However, the reported phe- 
nomena cannot be considered an effect of Po pressure approximation alone, as the Q1/Q1/Po 
seems to be free of this instability. Heuristically, one could suggest that this phenomenon comes 
from the discrete incompressibility constraint being too weak for the corresponding velo- 
city-stress approximation (this will be more rigorously discussed in the next section). 

To verify this assertion, we conducted one further comparison. As the pressure space of the 
Q1/Ql/Po cannot be further reduced, the obvious alternative is to enrich the stress and velocity 
spaces. To do this, we added a bubble function to the Q1 interpolants, obtained by multiplying 
two shape functions corresponding to opposite nodes of the master element so that the result 
vanishes at element boundaries. This extended-Ql -approximation will be labelled Q: . 
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I I I I 

Figure 7. Unstable behaviour of quadratic/quadratic/constant triangles. The instability cannot be cured by adding 
bubble functions. The results correspond to pi =0-999, p2 =OW1 and MESH 3 

The results are consistent with our conjecture. To show this, we plot in Figure 8 the v1 and 
rZ2 contours when p1 =0.999 for the three meshes. Clearly, an oscillatory mesh-sized mode 
appears which is nevertheless reduced by mesh refinement. The convergence analysis of 
Section 6 will eventually show that this element does not converge. 

5.2. The eflect of enriching the stress space with bubble functions 

Contrary to our expectations, we have not observed such a tight coupling between stresses and 
velocities as that observed between pressure and the other fields. When p1 is small, this can be 
attributed to the stabilizing effect of the p2 viscosity, but the same is observed with pl near unity. 

Consider the P2/P2/Po element. Its behaviour was discussed in Section 4. Changing the stress 
space to P: (i.e. switching to the P:/P2/Po element) yields different but not better results. 
Indeed, taking pl =098 in the 4-to-1 contraction, the three elements P2/P2/Po, Pzf/Pz/Po and 
P: /Pz /Po behave approximately in the same way, the latter performing slightly worse. Some 
differences arise in the velocity field when pl =0.999 (see Figure 7), suggesting that they are not 
equivalent in the limit, but we did not investigate this further. 

Turning now to the Q1/Q1/Po element, we have already shown in Figure 8 the effect of 
enriching both the stress and the velocity spaces. If only the stresses are enriched, the results are in 
between, perhaps closer to the Q: /Q: /Po case, but with no significant changes (see Figure 9). 

Finally, let us consider the PZ+/P2+/P1 element, as compared with the P2/P:/Pl variant 
(recently used by Hulsen’). Even when p2 is small, both elements behave in a very similar way, 
again showing the weak sensitivity of the three-fields formulation to the addition of bubble 
functions to the discrete-stress space. 

6. NUMERICAL CONVERGENCE ANALYSIS 

To study the convergence of the mixed elements presented above, we have selected a rather 
academic problem with a very attractive property: It has an explicit polynomic solution which is 
not contained in any of the finite element spaces we consider. 
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Element : 0; /Q; /Po 

MESH 1 

. 

MESH 2 MESH 3 

Figure 8. Performance of the Q:/Q:/Po element (as in Figure 3). 

Let 0 be the square [ - 1,1] x [ - 1,1], and let us define on it the volumetric force 

f= (- 4 8 ~ ’ ~ ’  - 24x4y + 36y, 4 8 ~ ~ ~ ’  + 24xy4 - 1 2 ~ ) .  

It is easily verified that the stream function and pressure 

+ = (1 - x4) (1 -y4), p = n X y  + c, 
where C is an arbitrary constant, satisfy the dynamic equilibrium equations. The corresponding 
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n 

V1 

MIN :-0.3532 

MESH 1 

n 

Element: (27 /Ql /PO 

MESH 2 

n 

MESH 3 

Figure 9. Performance of the Ql /Ql /Po  element (as in Figure 3). 

velocity and extra-stress fields are 

u=[-4y3(1--4), 4x3(1-y4)1, 

'512= 12p1 [x2(1 -y4)-y2(1 -x4)]. 

~ 1 1 =  - 222 = 32p1x3y3, 

We, thus, impose the boundary conditions on velocity that come from the above formula, and 
compute the L2(R)-norm of the true error by substracting the numerical solution from the exact 
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one at each quadrature point. We have taken pl =0-999, pz=O.OO1, and exploited the symmetry 
to restrict the domain to [0, 13 x [0, 13. 

The analysis was performed on three uniform meshes for each element, consisting of 121,441 
and 961 stress-velocity nodes (excluding bubbles) and the correspondng mesh sizes are propor- 
tional to 1/5, 1/10 and 1/15. These numbers are defined as h in our error plots. In Figures 10(a), 
10(b) and 1O(c), we show respectively, the error in extra-stress, velocity and pressure as functions 
of l/h. These results are in agreement with those of the previous sections. The elements under 
study can be classified into two groups: The stable ones (Q2/Q2/P1, P:/Pzf/P,, Q1/Q1/Po and 
Q: /Q,/P,) which converge towards the exact solution with the expected order, and the unstable 
ones, which exhibit convergence orders well below the others. 

We finish this section with a few remarks: 

1. The numerical tests confirm that all elements recover the theoretical' convergence orders 
when ,u2 >0.2. 

2. The Q,/Po combination for velocity and pressure, as is well-known (see e.g. Reference lo), 
does not satisfy the Babuska-Brezzi condition and, thus, is not a stable element. It is also 
known to yield pretty accurate results," as in this case, which up to now resist analysis. 

3. In view of the obtained results, the addition of a stress bubble to the Q1/Ql/Po does not 
seem worthy. 

4. It is interesting to note that, although the Qz/Qz/P1 and P:/P:/Pl exhibit similar 
convergence behaviour in the regular problem considered, the former yields much more 
accurate results for a given mesh size. 

0 Q21Q21Pl 
0 P2+/P2+/P1 

P2/P2/PO 
V Ql/Ql/PO 
0 Q2/Q2/PO + P2+/P2+/PO 

Ql +IQ1 +/PO 
x 01+/QIIPO 

P2+/P2/PO 

2 
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Figure 10. (Continued) 
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Table I. 

Extra-stress Velocity Pressure Convergence orders for Stable in 
the 4-to-1 element element element the regular problem of 

(continuous) (continuous) (discontinuous) Section 6 &'-norm) contraction? 

z V P 

Q2 

4 2  

p: 
p: 
p: 
p2 

Qi  

Qi 

Q; 

QZ 

4 2  

p: 
p: 
p2 

Qi 

Qi  

Qi 

pz+ 

Pi 
PO 
PI 
PO 
PO 
PO 
PO 
PO 
PO 

- 2.0 - 0.1 

- 0.2 
-0.1 
-01  - 0.4 - 1.5 - 1.5 

N 2.0 - 

- 
- 

-2.8 - - 2.0 
-0.1 - 0 1  
-2.4 - - 1.9 - 0.3 - 0.3 
-02 - 0 4  
-0.1 - 0.2 - 0.4 - 0 4  

Yes? 
No 
Yes 
No 
No 
No 
No? 
No 
Yes? 

7. DISCUSSION AND CONCLUDING REMARKS 

It has been shown that, when pz is small, the pressure discretization plays a crucial role in the 
stability of the discrete version of (4)-(6). A proper explanation for this can be found if the 
following two facts are recalled: first, that the pz term in (4) can be thought of as a regularization 
term and, thus, problem (4)-(6) will yield erroneous results with pz small if the problem is 
ill-posed when p2 vanishes (in analogy to what happens in nearly incompressible elasticity and in 
the penalized version of the velocity-pressure formulation of the Stokes problem with exact 
integration). Second, that the discrete pressure space enters the stability condition (7) via the 
definition of the space xh. In fact, the smaller the Qh the bigger is the X h .  As the inj?rnurn in (7) is 
taken over a larger space when Qh is reduced, the stability constant can indeed be lower and 
perhaps zero. This explains the results of Section 5.1. 

The small influence of the addition of usual bubble functions is also noteworthy, as it would 
have been attractive that such a simple modification of standard elements had a stabilizing effect 
on three-fields formulations. In References 2 and 8 some other special bubble functions are 
considered, which can serve for stability purposes. 

Let us now summarize the behaviour of the elements under study with Table I. There, we 
collect the observations of Sections 4 and 5, together with the obtained convergence orders in the 
regular problem of Section 6. It is remarkable that the good convergence properties of the 
Q2/Qz/P1 element are not verified in the 4-to-1 contraction problem. This could be an effect of 
the stress singularity, and is in agreement with the oscillations found with this element in the (also 
singular) stick-slip problem.' 

Finally, the P:/P:/Pl has exhibited a promising performance which should be confirmed by 
further tests. We are now carrying out similar comparisons with viscoelastic fluids, which are the 
content of a forthcoming paper." 
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